

ADRFT1 クイックガイド Version 1.0

Revision History

Version	Date	Comment
1.0	2024/6/7	新規作成

目次

1	Ove	erview	4
2	Blo	ck Diagram	4
3	出花		5
	3.1	電源	5
	3.2	UART	6
	3.3	1Gb Ether	$\overline{7}$
	3.4	HDMI	$\overline{7}$
	3.5	USB2.0	8
	3.5	5.1 USB ホスト(Linux で使用)	8
	3.5	5.2 USB デバイス(eMMC をマスストレージとして使用)	8
	3.6	Wifi	9

1 Overview

本マニュアルは、Polarfire SoC入門者向けにADRFT1を容易に使えるようにすることを目的としたマニュアルです。

2 Block Diagram

ADRFT1のブロック構成を以下に示します。

ブロック図のADRFT1_SOMの中身は、

MSS (Microprocessor Subsystem) とFPGA Fabric に分かれています。

(参考リンク

https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/polarfire-s oc-fpgas)

MSS部は、RISC-V CPUと、その周辺回路として、汎用I/Fである、SPI, I2C, UART, CANや、DDR I/Fなどを実装します。

FPGA Fabric 部は、ユーザー独自の回路を設計し、実装することができます。

3 出荷状態での使い方

ADRFT1 の出荷時での各 IF の使い方を説明します。

3.1 電源

電源は AC コネクタまたは USB TypeC 端子から選択して供給することができます。

・ACコネクタ使用時

キャリアボード上の J14, J15(AC コネクト側の 2 つ)をショートさせます。

·USB TypeC 端子使用時

キャリアボード上の J13, J14(USB TypeC 端子側の 2 つ)をショートさせます。

3.2 UART

SoM 上の Micro USB 端子から Linux/HSS コンソールを使用できます。

- 1. SoM 上の DIPSW Bit2 を OFF し、MicroUSB ケーブルで PC と SoM を接続します。
- 2. 電源 ON すると Linux が起動します。
- 3. PC で TeraTerm 等のシリアル通信ターミナルを起動し BPS を 115200 に設定します。

era Term: シリアルポート 設定と打	妾続			×			
ポート(P):	COM10	~	祖本の接続を再設定(い)	1			
スピ <i>ー</i> ド(E):	115200	~		J			
データ(D):	8 bit	~	キャンセル				
バリティ(A):	none	~					
ストップビット(S):	1 bit	~	ヘルプ(H)				
フロー制御(F):	none	~					
送信遅延							
0	ミリ秒/字(C)	0	ミリ秒/行(L)				
Device Friendly Nam Device Instance ID: Device Manufacture Provider Name: FTD Driver Date: 7–5–20 Driver Version: 2.12)	ne: USB Seria FTDIBUS¥VII r: FTDI I 21 36.4	l Port (C)_0403+P	OM10) ID_6015+D2019PJ2A¥00(

5. Linux コンソールでは以下のユーザ名, パスワードを入力してログインできます。

一般ユーザ : adrft1, パスワード : adrft1

ルートユーザ : root, パスワード : root

同様の手順で SoM 上の DIPSW Bit2 を ON にすることで HSS コンソールを使用することができます。

3.3 1Gb Ether

電源 OFF 状態でキャリアボード上の DIPSW S1, S2 を以下のように設定します。(S1,S2 両方とも同じ設定)

- 1 : ON
- 2 : OFF
- 3 : ON
- 4 : ON

電源 ON し LAN ケーブルを挿入することで Linux から使用することができます。

3.4 HDMI

設定することで、サンプル画面の表示がされるようになっています。

Linux にログイン後、以下のコマンドを実行し、HDMI ケーブルを接続することで Linux デスクトップ環境が表示されます。

■HDMI 表示を有効化する場合は以下コマンドを実行します。 startx &

sudo sh /home/adrft1/hdmi_enable.sh

■ HDMI 表示を無効化する場合は以下コマンドを実行します。 sudo sh /home/adrft1/hdmi_disable.sh

※Wifiを使用する際は HDMI を無効化することを推奨します。

3.5 USB2.0

USB TypeA 2.0 端子はジャンパ, ディップスイッチを切り替えることで USB ホスト/デバイスを選択できます。

3.5.1 USB ホスト(Linux で使用)

- 1. 電源 OFF 状態で基板を以下の状態にします。
 - SoM 上の DIPSW の Bit2 を OFF
 - キャリアボードの JP2 ジャンパをショート
 - キャリアボード裏面の S2 DIPSW を"HOST"に設定
- 2. 電源 ON することで USB TypeA 端子に接続した USB デバイスを Linux から使用することができます。

3.5.2 USB デバイス(eMMC をマスストレージとして使用)

ベアメタル、OS を eMMC に格納し、eMMC から起動することが可能です。 eMMC は SD Slot と排他での起動となります。

- 1. 電源 OFF 状態で基板を以下の状態にします。
 - SoM 上の DIPSW bit2を ON
 - キャリアボードの JP2 ジャンパをオープン
 - キャリアボード裏面の S2 DIPSW を"DEVICE"に設定
- 2. 電源 ON し 3.2 UART の手順に沿ってシリアル通信ターミナルを設定します。
- 3. HSS コンソールにて usbdmsc コマンドを実行します。
- 4. キャリアボードの USB TypeA 2.0 端子と PC を USB ケーブルで接続します。
- 5. PC にて SoM 上の eMMC がマスストレージとして認識されます。

(HSS参考リンク https://github.com/polarfire-soc/hart-software-services)

3.6 Wifi

Linux にログイン後、以下のファイルを編集することで Wifi が有効化されます。 Ip アドレス等の詳細設定については Netplan で設定を行ってください。 ※HDMI での Linux デスクトップ環境との併用は非推奨です。

- 1. キャリアボード裏面 S4 DIPSW を SPI に設定します。
- 2. ファイル /etc/NetworkManager/NetworkManager.conf を開き以下の11,12 行目を削除します。

[keyfile] unmanaged-devices=interface-name:wlan0

- 3. su でログインした状態で crontab -e を実行し、以下の記述をコメントアウトします。 @reboot ip link set wlan0 down
- 4. ファイル /etc/netplan/99-netcfg.yaml の末尾に Netplan の設定を記載します。 以下は記載例となります。お使いの環境に合わせて編集してください。

wifis: wlan0: optional: true access-points: "<mark>SSID を記載</mark>": password: "<mark>パスワードを記載</mark>" dhcp4: true dhcp6: false